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Why spatial normalization?

• Characterize disease effects on white matter

• Deformation-based morphometry

• Voxel-based morphometry

• Create white matter atlases

• Study average anatomy, variability in 
anatomy, changes over time

• Enable more robust fiber tractography



Registration of diffusion tensor images

• Registering the corresponding T1 images

• Xu et al, MRM 03

• Registering the DTI-derived FA images

• Jones et al, NeuroImage 02

• Andersson et al, FMIRB technical report 07

• Registering the tensor images themselves

• Alexander et al, CVIU 00

• Park et al, NeuroImage 03

• Zhang et al, MedIA 06

• Van Hecke et al, IEEE TMI 07

• Yeo et al, IEEE TMI 09



Diffusion-tensor imaging (DTI) reveals the 
organization of white matter

DTI

?
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But how can image registration algorithms be 
adapted to DTI data?
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Measuring similarity between two DT images

skeletonization are inequality constraints and are handled in this paper
the sameway as in (Yushkevich et al., 2006b), i.e., by using additional
penalty terms during model fitting.

Now, as we apply deformations to the nodes of the sparse-level
skeleton S0, we can use inverse skeletonization to generate a
boundary of the medial model at subdivision level k. Furthermore,
the correspondence between points on the skeleton and boundary
points established by Eq. (1) allows us to parameterize the region
enclosed by the boundary, as discussed in Shape-based coordinate
system section. Overlap between the medial model and a binary
image can be computed efficiently. Thus, fitting a model to a
binary segmentation of a fasciculus is an optimization problem
where overlap between the model's interior and the segmentation is
maximized and the penalty terms required for inverse skeletoniza-

tion to be well-posed are minimized. Model fitting is discussed in
greater detail in (Yushkevich et al., 2006b).

Automatic model building for initialization

Prior to fitting a deformable medial model to a target structure,
an initial model must be generated. While it is possible to begin
with a simple stock model, the freedom to choose an arbitrary
domain Ω makes it possible to build data-driven initial models.
With the freedom to define cm-reps over arbitrary domains comes
the problem of finding the right domain and the right mesh
configuration for a particular anatomical structure. We accomplish
this by essentially flattening the skeleton of the structure, under
constraints that minimize local distortion.

Fig. 5. Left: fiber tracking results for the six selected fasciculi. Right: skeletons of the cm-rep models fitted to the six fasciculi.

Fig. 6. Visual assessment of registration accuracy. Each plot above shows a coronal slice through one of the subjects' DTI images registered to the DTI atlas,
except for the last plot, which shows the atlas itself. The projection of the medial models of the fasciculi into the cut plane are shown as white curves in each plot.
These curves are exactly the same across all nine plots and are provided as a reference.

453P.A. Yushkevich et al. / NeuroImage 41 (2008) 448–461



Trace

What properties of the diffusion tensor 
should use for image matching?

FA Orientation

DTI

Pierpaoli et al., 1996: No significant differences in 
trace between white matter regions



DTI-TK tensor metric:
Euclidean distance between “deviatoric” tensors

µ(D1,D2) �
�

Tr
��

D̂1 − D̂2

�2
�

Tensor similarity:

Deviatoric tensor:

D̂ � D− 1
3
Tr(D) · I3×3



But how can image registration algorithms be 
adapted to DTI data?
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Treating DTI as “multi-channel” images results in 
nonsensical spatial transformations

Tensor 
Reorientation

(Alexander et al, IEEE TMI 01)



φ(x) = Qx + T

D� = QDQT

Tensor reorientation: rigid transformation case



D� = MDMT

φ(x) = Mx + T

Tensor reorientation: non-rigid transformation case

?



Reorient tensor D� = QDQT such that �e �
1, the

principal eigenvector of D�, coincides with M�e1

Tensor reorientation: 
preservation of principal direction



Reorient with rotation matrix Q that is
the closest approximation of M

Tensor reorientation: 
finite strain

Q∗ = arg min
Q

�Q−M�



Efficient implementation of finite strain reorientation 
in DTI-TK

• Deformable transformation modeled as piecewise affine deformation

arg min
{Q,S,T}i

N�

i=1

�

Ωi

µ
�
Ds(φi(x)), QiDt(x)QT

i

�
dx + Ereg(φ1, . . . ,φN )

φi(x) = Mix + Ti Mi = QiSi

• Overall objective:

• Affine transforms modeled via polar decomposition as pure rotation (Q) and 
shape matrix (S):

Subject Template

Fi
i

Fig. 5. A 2D illustration of the template being uniformly subdivided into contiguous

regions. The neighbors to the region which is indexed by i and colored black are

identified by light grey coloring.

region, Ωi, has 6 neighboring regions and thus 6 different interfaces. For each region

Ωi in the template, the goal of the piecewise algorithm is to find an affine trans-

formation Fi that gives the best match with the subject, under certain smoothness

constraints that are described below. A 2D illustration is shown in figure 5.

We will refer to the collection of Fi over all possible regions as a piecewise affine

transformation, denoted as F. Because the transformation within each region is

affine, the smoothness within a region is guaranteed. The smoothness of the piece-

wise affine transformation thus needs to be imposed only on region interfaces. Fol-

lowing the standard approach in optical flow estimation (Hellier et al., 2001), we

minimize the transformation discontinuities across interfaces, which is formulated

for neighboring regions Ωi and Ωj as

ψ(pi,pj) =

�

Ωi∩Ωj

�Fi(x)− Fj(x)� dx , (9)

where pi and pj parametrize Fi and Fj respectively. Similar to (8), analytic deriva-

tives can be derived for (9) as shown in Appendix B.

If the number of regions in each dimension is n, the parameter space of this opti-

mization problem has a dimension of 12n3
. We subdivide the template hierarchically

with n being 4, 8, 16 and 32. At the finest subdivision level, the dimension of the

parameter space is 393,216. The ability to compute derivatives of (9) analytically

allows us to take advantage of the conjugate gradient method. Analytic derivative-

based optimization is generally more efficient than optimization techniques that

approximate derivatives with finite-difference method. The high dimensionality of

our optimization problem makes optimization techniques not using derivatives, such

15

φi

Q is the finite 
strain solution!



FA-based normalization
(Without Orientation)

Tensor-based normalization
(With orientation)

Template image
(Target)

Improved tensor orientation alignment with tensor-
based normalization



Tensor-based normalization improves the sensitivity 
of the detection of FA differences in ALS

• Task-driven evaluation of three normalization approaches

- White matter changes in ALS as measured by FA

- Cross-sectional design with 8 controls and 8 patients

• Key findings

- Increased sensitivity of detected FA changes with tensor-based approach

- Reduced susceptibility to false-positives due to shape confounds

p-value = 0.0037p-value = 0.0046p-value = 0.0165

FA SPM2 FA Diffeo Tensor

p-value = 0.0121

H Zhang et al, IEEE TMI 07



First systematic comparison of publicly available 
DTI registration tools (Wang et al, NeuroImage 11)

• FA-based registration tools

• IRTK (Schnabel et al, MICCAI 01)

• FNIRT (Andersson et al, FMRIB technical report 07)

• Demons (Vercauteren et al, IPMI 07)

• Log Demons (Vercauteren et al, MICCAI 08)

• Fluid (Joshi et al, NeuroImage 04)

• Tensor-based registration tools

• DTI-TK (H Zhang et al, MedIA 06)

• MedINRIA (Yeo et al, IEEE TMI 09)

DTI-TK reported as top performer for the authors’ application



Constructing population-specific white matter 
atlases

Guimond et al, CVIU 00

Zhang et al, MICCAI 07

DTI-TK provides an implementation



Improved registration allows generation of better 
white matter atlases

6

We applied the proposed algorithm to the DT images reconstructed from
the diffusion-weighted images using the standard linear regression [1]. The atlas
constructed is shown in fig. 1 along with the initial atlas constructed from affinely
aligned images. Compared to the initial atlas (top row), the final atlas (bottom
row) has considerably sharper edge features as well as much richer details in the
cortical regions.

Fig. 1. Comparison of the atlas constructed from affine registered images (top row)
to the atlas constructed from registered images using the proposed algorithm (bottom
row). The regions with more prounounced differences are highlighted with arrows. The
RGB image encodes the principal diffusion directionss: red for left-right, green for
anterior-posterior and blue for inferior-superior [12].

To demonstrate the behavior and the performance of the enhanced piece-
wise affine registration algorithm, the algorithm is used to register the affine
registered images to the constructed unbiased atlas with 6 incremental steps.
We quantitatively assessed the overall quality of spatial normalization after each
incremental step using two voxelwise statistics: normalized FA standard devia-
tion σ̄FA and dyadic coherence κ. Since diffusion anisotropy and the dominant
direction of diffusion are two features that account for most of the variations in
WM [2], misalignment that renders different WM structures being mapped to
one another should yield large voxelwise variations in either one or both of the
features. The two voxelwise statistics directly assess these variations and hence
can be indicative of misalignment of WM structures. Given a set of DTs sampled
at some voxel from the normalized images after a particular incremental step,
σ̄FA is defined as the ratio of the standard deviation and mean of the FA values

AFFINE

DTI-TK

Zhang et al., WBIR 2010. White matter atlas of 51 older healthy adults
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Tract-Specific Analysis (TSA): 
at the intersection of two WM analysis paradigms
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TSA Framework



Normalization to common anatomical space 
enhances fiber tractography
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Deformable medial models are fitted to 
sheet-like white matter tracts

object

skeleton parametric medial model

boundary representation

skeletonization inverse skeletonization

target object

match

update model
parameters



Deformable medial models are fitted to 
sheet-like white matter tracts

object

skeleton parametric medial model

boundary representation

skeletonization inverse skeletonization

target object

match

update model
parameters



Surface-based modeling of major sheet-like tracts



Surface-based modeling of major sheet-like tracts

Six sheet-like fasciculi Surface representation



Tract-specific statistical inference

EBC%/)B1/(5B,F+M%*"-01/

*B)%()%
-1/,#15

="'N%-,+OP+H(.);#(-,&@B)%+,&C(.

H1*%5+(/*+Q'%#)



Parametric surface representation aids visualization
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TSA examples: white matter changes in AD/FTD 
(30-directional DW-MRI)

AD 23f / 21m 67.8 (10.9)

FTD 27f / 35m 66.5 (7.6)

CTL 16f / 8m 66.1 (8.8)
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Subject-space TSA: 
combined analysis of FA and thickness in ALS

fusion properties which captures the interdependencies of thick-
ness and diffusion features as provided solely by the data. The
pdf of a subject is estimated by determining the fraction of points
on its skeleton surface with a particular value of thickness and dif-
fusion properties (see Fig. 3 for an example). We use this pdf as the
multivariate high-dimensional descriptor of the associated white
matter tract to summarize its macroscopic and microscopic prop-
erties jointly. Statistical testing for group differences with these
high-dimensional descriptors is then done via the same non-para-
metric test as the univariate statistical mappings above, except
here the test is done in the functional domain of the pdf rather than
the spatial domain of the skeleton surface. The implementation re-
quires the discretion of the joint pdfs on an appropriate Cartesian
grid. The choice of the grid resolution is constrained by the amount
of data available, i.e., the sample size underlying the density esti-
mation. For example, a larger sample size will support a higher-
resolution probing of the data to search for finer-scale changes.
Within this constraint, the choice of the grid resolution adjusts
the trade-offs similar to those involved in voxel-based morphome-
try studies in standard fMRI literature regarding smoothing of the
data and the scale at which statistically significant effects are
searched for in the data, e.g., coarser grids result in a higher degree
of smoothing, implicitly.

3. Experimental evaluation

We demonstrate the proposed analysis in an application to
identify white matter changes in ALS. Because of the existing
hypothesis that ALS strongly affects the motor pathway, only the
left and right CSTs were included in the analysis. Two univariate
statistical mappings on thickness and FA were first performed, fol-
lowed by the multivariate analysis using the joint pdfs of thickness
and FA. The clusters with FWE-corrected p-value < 0.05 were
deemed significant in all analyses.

3.1. Subjects and imaging protocol

The subjects used in this evaluation were recruited from the
community served by the University of Pennsylvania Health Sys-
tem (UPHS) as part of an ongoing clinical investigation into white
matter changes in ALS using magnetic resonance imaging (MRI).
Out of a total of 29 subjects scanned, only 16 were acquired with
the same diffusion imaging protocol and they were chosen for
the present study. Among them were eight ALS patients (age 42–
77, mean age and standard deviation 60 ± 11; six male, two female)
and eight healthy controls (age 40–56, mean age and standard
deviation 46 ± 6; six male, two female). All subjects provided in-
formed consent, following procedures approved by the local Insti-
tutional Review Board of the UPHS. Diffusion tensor imaging was

performed using a single-shot, spin-echo, diffusion-weighted
echo-planar imaging sequence on a 3.0-T Siemens Trio scanner
(Siemens Medical Solutions, Erlangen, Germany). The diffusion
sampling scheme consisted of one image with minimal diffusion
weighting (b = 0 s/mm2), followed by 12 images measured with
12 non-collinear and non-coplanar diffusion encoding directions
isotropically distributed in space (b = 1000 s/mm2). Additional
imaging parameters for the diffusion-weighted sequence were:
TR = 6500 ms, TE = 99 ms, 90! flip angle, number of averages = 6,
matrix size = 128 ! 128, slice thickness = 3.0 mm, spacing between
slices = 3.0 mm, 40 axial slices with in-plane resolution of 1.72 !
1.72 mm, resulting in voxel dimensions equal to 1.72 ! 1.72 !
3.0 mm3.

The diffusion-weighted images were corrected for motion and
eddy-current artifacts using the method described in (Mangin
et al., 2002), prior to extracting brain parenchyma with the Brain
Extraction Tool (Smith, 2002). The diffusion tensor images were
then reconstructed from the diffusion-weighted images using the
standard linear regression approach Basser et al. (1994a). Finally,
the resulting tensor volumes were resampled to a voxel space of
128 ! 128 ! 64 with voxel dimensions equal to 1.72 ! 1.72 !
2.5 mm3. The resampled volume, with axial dimension equal to a
power of 2, is better suited for registration algorithms that require
the construction of standard multi-resolution image pyramids.

3.2. Results

The results of the two univariate statistical mappings are shown
in Fig. 2. Two significant clusters of reduced thickness in ALS com-
pared to healthy controls were found with one on each CST. The
cluster on the left CST corresponds to the internal capsule and
the one on the right CST maps to Broadmann area (BA) 6, the pre-
motor cortex and supplementary motor cortex. One significant
cluster of reduced FA in ALS was found on the left CST, which maps
to BA 1, 2 & 3, the primary somatosensory cortex, BA 4, the primary
motor cortex. Evidently, the macroscopic changes highlighted by
the thickness analysis provides a more complete picture of white
matter atrophy caused by ALS than the microscopic changes iden-
tified by the FA analysis alone.

The results of the multivariate analysis using the joint pdfs of
thickness and FA are shown in Fig. 3. We show the results for the
joint pdfs discretized on a Cartesian grid of size 32-by-32, although
the findings are consistent for a range of grid resolutions. The
appearance of the joint pdfs is illustrated in Panels (a) and (b) using
the joint pdfs of the left CSTs averaged for the healthy controls and
the ALS patients, respectively. The two visibly different pdfs indi-
cate that the healthy controls have more regions of large FA and
thickness while the ALS have more areas of low FA and thickness.
A similar pattern is observed for the right CST (not shown). These

thickness FA

Fig. 2. The significant clusters of reduced thickness and FA in ALS compared to healthy controls (in red) overlaid on the corresponding t-statistics maps on the skeleton
surfaces of the CSTs. From left to right: the thickness cluster and t-statistics map for the right CST, the thickness cluster and t-statistics map for the left CST, the FA cluster and
t-statistics map for the left CST. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Conclusions

• Full tensor information should be used for DTI volume registration

• Tensor reorientation is required prior to tensor matching

• Population-specific atlases derived from DTI normalization allow excellent 
fiber tractography

• Surface-based representation of sheet-like tracts facilitates tract-specific 
statistical analysis

• All tools are part of free DTI-TK software

www.nitrc.org/projects/dtitk
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